Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies in weakly dissipating materials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

(http://iopscience.iop.org/1464-4258/9/9/S03)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 130.88.0.80
The article was downloaded on 04/02/2012 at 22:05

Please note that terms and conditions apply.
Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies in weakly dissipating materials

B S Luk'yanchuk, M I Tribelsky, V Ternovsky, Z B Wang, M H Hong, L P Shi and T C Chong

1 Data Storage Institute, Agency for Science, Technology and Research, 117608, Singapore
2 Moscow State Institute of Radioengineering, Electronics and Automation (Technical University), 78 Vernadskiy Avenue, Moscow 119454, Russia
3 M V Lomonosov Moscow State University, Faculty of Computing Mathematics and Cybernetics, MSU, Vorobovy Gory, Moscow 119899, Russia
4 School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M60 1QD, UK

E-mail: Boris.L@dsi.a-star.edu.sg

Received 3 February 2007, accepted for publication 12 April 2007
Published 22 August 2007
Online at stacks.iop.org/JOptA/9/S294

Abstract
Light scattering by a small spherical particle and nanowire with low dissipation rates are discussed according to the Mie theory (and similar solution for the cylinder). It is shown that near plasmon (polariton) resonance frequencies one can see non-Rayleigh anomalous light scattering with quite a complicated near-field energy flux.

Keywords: plasmon polariton resonance, anomalous light scattering, near-field energy flux

(Some figures in this article are in colour only in the electronic version)

1. Introduction
Light scattering by small particles is an important problem for modern applications in plasmonics and nanotechnologies [1]. However the majority of research on plasmonics was done for materials with rather a strong dissipation at plasmon (polariton) resonance frequencies, e.g. gold, platinum, etc. In this case light scattering by nanostructures can be analysed at the dipole approximation (the Rayleigh scattering), i.e. a point dipole for spheres and a linear dipole for nanowires. At the same time it is well known that all transverse electromagnetic modes for the particle have finite lifetimes because of radiative damping, see [2]. The Rayleigh scattering is valid provided the radiative damping is negligible compared to dissipative losses [3–5]. Meanwhile a few publications devoted to the study of the opposite limit [6–13] clearly show that light scattering in this case is characterized by very unusual properties. In this paper we refer to certain new aspects of light scattering in materials with weak dissipation rates.

2. Optical resonances for volume and surface modes
Though light scattering by a spherical particle is one of the most fundamental problems of classical electrodynamics, the general physical understanding of the problem has not changed much since the publication of its exact solution by Mie in 1908 [14]. As for light scattering by a particle whose size is much smaller than the wavelength of incident light, its understanding up to now is based upon the approach developed by Lord Rayleigh in 1871 [15]. According to the approach a small particle should emit electromagnetic radiation as an oscillating electric dipole. The point to be made is that this simple description has quite a general and very important exception, when the scattering process has
Light scattering by nanoparticles and nanowires near plasmon resonance frequencies

Figure 1. Amplitudes of the first three optical resonances a_i (electric) and b_i (magnetic) for nondissipative material $\varepsilon'' = 0$, at $n = 1.5$. Optical resonances are reached at the points where $\text{Re} \, a_i = 1$ or $\text{Re} \, b_i = 1$.

very little in common with the Rayleigh scattering, and the extinction (scattering) cross section differs from that given by the Rayleigh approximation in orders of magnitude. This exception corresponds to the low dissipation limit and will be discussed below.

The formula for the Rayleigh approximation can be easily found from the general Mie solution. According to this solution, the extinction, scattering and absorption cross sections are given by the expression $\sigma = \pi a^2 Q$, where related efficiencies Q are presented as follows [3–5]:

$$
Q_{\text{ext}} = \frac{2}{q} \sum_{\ell=0}^{\infty} (2\ell + 1) \text{Re} \, (a_\ell + b_\ell),
$$

$$
Q_{\text{sca}} = \frac{2}{q} \sum_{\ell=0}^{\infty} (2\ell + 1) \{ |a_\ell|^2 + |b_\ell|^2 \},
$$

$$
Q_{\text{abs}} = Q_{\text{ext}} - Q_{\text{sca}}.
$$

Here we consider light scattering by a nonmagnetic ($\mu = 1$) spherical particle of radius a immersed in a transparent medium with purely real positive refractive index n_0. The quantity $q = n_0 a_0^2 \omega / c$ represents the size parameter ($q \ll 1$ for a small particle); here c is the speed of light in vacuum and ω stands for the incident light frequency. The scattering amplitudes a_ℓ (electric) and b_ℓ (magnetic) are defined by the Mie formulae; it is convenient to write them in the following way:

$$
a_\ell = \frac{\gamma^{(a)}_{\ell}}{\gamma^{(a)}_{\ell} + i \gamma^{(a)}_{\ell}}, \quad b_\ell = \frac{\gamma^{(b)}_{\ell}}{\gamma^{(b)}_{\ell} + i \gamma^{(b)}_{\ell}},
$$

\begin{align}
\gamma^{(a)}_{\ell} &= n \tilde{\psi}'_{\ell'} (q) \psi_{\ell'} (\tilde{n} q) - \psi_{\ell'} (q) \tilde{\psi}'_{\ell'} (n q), \\
\gamma^{(b)}_{\ell} &= n \tilde{\chi}'_{\ell'} (q) \psi_{\ell'} (\tilde{n} q) - \psi_{\ell'} (q) \tilde{\chi}'_{\ell'} (n q),
\end{align}

Here $\psi_{\ell'} (z) = \sqrt{\pi z^2} : J_{\ell'} (z), \chi_{\ell'} (z) = \sqrt{\pi z^2} : N_{\ell'} (z)$, where $J_{\ell'} (z)$ and $N_{\ell'} (z)$ are the Bessel and the Neumann functions, respectively. The strokes in formulae (3) and (4) indicate differentiation over the entire argument of the corresponding functions, i.e. $\psi_{\ell'} (z) \equiv d \psi_{\ell'} (z) / dz$, etc; $\tilde{n} = \sqrt{n + i \kappa}$ is a relative complex refractive index, where κ stands for relative dielectric permittivity: $\kappa = \varepsilon / \varepsilon_0$; indexes ‘p’ and ‘m’ indicate the particle and media, respectively. We consider that both real and imaginary parts of the relative refractive index are positive quantities.

The scattering amplitudes a_ℓ and b_ℓ depend on parameter q and the real and imaginary parts of $\varepsilon = \varepsilon' + i \varepsilon''$. For fixed ε amplitudes a_ℓ and b_ℓ oscillate versus size parameter q. They reach maximal values at some points (the so-called optical resonances [3–5]). For the case of positive $\varepsilon' > 0$ and nondissipative media these resonances were studied in numerous papers, see e.g. [16], due to their important role in radiation pressure, optical levitation, etc. One can see immediately from equation (2) that, for nondissipative media, maximal values of amplitudes are $a_\ell = 1$ and $b_\ell = 1$. They are reached at the points, where $\gamma^{(a)}_{\ell} (q, \varepsilon) = 0$ and $\gamma^{(b)}_{\ell} (q, \varepsilon) = 0$, respectively. These equations present the trajectories of optical resonances on the $[q, \varepsilon]$ plane. At $\varepsilon' > 0$ the optical resonances are related to excitation of volume waves in the spherical cavity. It is important that for any reasonable values of $n = \text{Re} \sqrt{\varepsilon}$ these resonances arise at rather large values of the size parameter $q > 1$ and for this case resonances of electric and magnetic amplitudes are overlapped, see in figure 1.

At $\varepsilon < -1$ other branches of optical resonances related to excitation of surface electromagnetic waves arise. At $q \to 0$ these resonances occur at $\varepsilon = \varepsilon_\ell = - (\ell + 1) / \ell$. The branches of volume and surface Mie resonances converge at some negative values of ε, e.g. at $\varepsilon \approx -5$ and $q \approx 1.2$ for dipole resonance $\ell = 1$, see in figure 2.

Expanding the Bessel and Neumann functions in power series, it is easy to find that at small q

\begin{align}
\gamma^{(a)}_{\ell} &\approx q^{\ell + 1} \frac{(\ell + 1)}{[(2\ell + 1)!]^2} \tilde{n}^{2(\ell + 1)} \left(\tilde{n}^2 - 1 \right), \\
\gamma^{(b)}_{\ell} &\approx q^{\ell + 1} \frac{\ell}{2\ell + 1} \left[\tilde{n}^{2} + \frac{\ell + 1}{\ell} - \frac{q^2}{\ell} \frac{2}{(\tilde{n}^2 - 1)} \right. \\
& \left. \times \left(\frac{\tilde{n}^2}{\ell + 3} + \frac{\ell + 1}{\ell (2\ell - 1)} \right) \right],
\end{align}

\begin{align}
\gamma^{(a)}_{\ell} &\approx \frac{\tilde{n}q^2}{2\ell + 1} \gamma^{(a)}_{\ell}, \\
\gamma^{(b)}_{\ell} &\approx - \tilde{n}q^2 \frac{\gamma^{(b)}_{\ell}}{2(\ell + 1)},
\end{align}

\begin{align}
\gamma^{(a)}_{\ell} &\approx \frac{1}{2(\ell + 1)} \left(1 - \frac{\tilde{n}^2}{\ell^2} \right),
\end{align}

S295
It yields the classical Rayleigh formula:

$$Q_{\text{sca}} \approx \frac{8}{3} \left(\frac{\varepsilon - 1}{\varepsilon + 2} \right)^2 q^4. \quad (6)$$

The Rayleigh scattering approximation for a small particle is applicable for all cases far from the optical resonances. Close to the resonances it should be modified, provided the dissipation is small enough (the right-hand side of equation (6) just diverges at $\varepsilon = -2$). Note, there are two possibilities to achieve an optical resonance for small particles. The first way is related to large values of ε. For example, at $\varepsilon = 400$ optical dipole magnetic resonance occurs at $q \approx 0.157$ and dipole electric resonance at $q \approx 0.385$. The other way is to work with negative ε in the vicinity of plasma (polariton) resonances, where $\varepsilon \approx - (\ell + 1)/\ell$. In this case optical resonances are associated with electric amplitudes solely and correspond to resonant excitation of surface plasmon (polariton) modes.

 Pronounced peculiarities of light scattering by small weakly dissipative materials near the plasmon resonance frequencies differ from the Rayleigh case so dramatically that it allows us to name such a scattering ‘anomalous’ scattering’ [10, 11, 13]. Namely, at the resonance frequencies $\omega = \omega_0$ the corresponding electric amplitude $a_\ell = 1$ while b_ℓ is negligibly small. Then, as it follows from equation (1) $Q_{\text{sca}}^{(0)} = 2(2\ell + 1)/q^2$, where $Q_{\text{sca}}^{(0)}$ stands for the resonance partial efficiency. As in the vicinity of the resonances the net efficiency is overwhelmingly determined by the corresponding partial one the expression $Q_{\text{sca}}^{(0)} = 2(2\ell + 1)/q^2$ means the resonance scattering cross section increases with an increase in order of the resonance ℓ. Thus, the cross section at the quadrupole resonance is 5/3 of that at the dipole resonance, etc. However to observe this ‘inverse hierarchy’ at least the necessary condition $\varepsilon'' \ll 1$ should be satisfied. Usually experiments are carried out with small particles of gold, silver, mercury and platinum [17]. For all these metals the condition of weak dissipation at the resonance frequencies, $\varepsilon''(\omega_0) \ll 1$, does not hold. A possible candidate for manifestation of the anomalous scattering may be an additively coloured crystal of KCl with colloidal potassium particles as scatterers [6]. Another possible example discussed in [10] is an aluminium particle in vacuum. The third example is Na (also as colloidal particles in crystals of NaCl with stoichiometric excess of sodium). According to [17] the three materials have weak dissipation rates (about $\varepsilon'' \approx 0.1$) at the frequencies of surface plasmon excitation, i.e. at $\lambda \approx 125$–140 nm for Al, $\lambda \approx 310$–380 nm for Na and $\lambda \approx 500$–550 nm for K. Our calculations with experimental values for the dielectric function show that for Al particles with $a = 30$ nm the ratio of the extinction cross-sections at quadrupole and dipole resonances is about 1.19 [10]. Naturally, it is smaller than 5/3 for a nondissipative particle, but much greater than that for the Rayleigh approximation. In our calculations [10] we took into account the size effect with the help of renormalization of collision frequency of free electrons due to their collisions with the particle surface [18], $\gamma \to \gamma_\text{ext} + v_F/\alpha$. The data for Fermi velocity v_F for this renormalization was also taken from the experiment [19].

Optical plasmon resonances for weakly dissipative materials are extremely sharp. In the case of the Rayleigh scattering the width of the resonance line is directly related to ε'' and vanishes at $\varepsilon'' \to 0$. In contrast to that the exact Mie solution at $\varepsilon'' = 0$ near plasmon resonance frequencies yields the usual Lorentzian contour with a certain characteristic width γ. To show this let us consider the case of a metallic particle whose dielectric permittivity is described by the Drude formula:

$$\varepsilon = \varepsilon_\infty - \frac{\omega_0^2}{\omega^2 + i\gamma}.$$

Here, as usual, ω_0 denotes the plasma frequency, while γ is the frequency of electron collisions. Inserting equation (7) in equation (6) in the Raleigh case one obtains a Lorentzian scattering contour,

$$Q_{\text{sca}}^{(R_{\ell})} = \frac{8}{3} \frac{\omega_0^4}{(\omega^2 - \omega_0^2)^2 + \omega^2 \gamma^2}. \quad (8)$$

where $\omega_0 = \omega_0/\sqrt{\varepsilon}$ stands for frequency of the dipole surface plasmon resonance at $q \to 0$. As is seen from equation (8), the resonance width is directly connected with the parameter responsible for dissipation. The Drude formula can be written in a similar way in the absence of dissipation ($\gamma = 0$). The expression for the partial dipole scattering efficiency following from equation (1) is $Q_{\text{sca}} \approx 6|a_1|^2/q^2$. Here $a_1 = \Re \{\omega_0^2 / (\varepsilon_1^{(0)} + i\gamma)\}$, where $\Re \{\varepsilon_1^{(0)} + i\gamma\}$ at $q \ll 1$ are determined from equation (5). We should remember that the plasmon resonance frequencies are defined by the condition $\varepsilon_1^{(0)} = 0$, and therefore, in the nearest vicinity of ω_0^2, $\varepsilon_0^q = i\sqrt{2(\omega_0^2 - \omega_0^2)^2/\omega_0^2}$ and $\varepsilon_0^q = -2i\sqrt{2}q^3/3$. It yields the following Lorentzian profile:

$$Q_{\text{sca}} = \frac{8}{3} \frac{\omega_0^4}{(\omega^2 - \omega_0^2)^2 + \frac{4}{3}q^2 \omega_0^2}. \quad (9)$$

Figure 2. Trajectories of the five first optical resonances a_ℓ (solid) and b_ℓ (dashed) for nondissipative material $\varepsilon'' = 0$, at negative ε.

Far from the resonances $\varepsilon \ll 3$. In this case the term with $\ell = 1$ (dipole scattering) plays the dominant role. Also for small particles one can neglect magnetic amplitudes compared to the electric ones because of their additional smallness in q. It yields the classical Rayleigh formula:

$$Q_{\text{sca}} \approx \frac{8}{3} \left(\frac{\varepsilon - 1}{\varepsilon + 2} \right)^2 q^4. \quad (6)$$
Comparing equations (8) and (9), it is easy to see that the role of the dissipation parameter in equation (9) is played by the quantity
\[\gamma_{\text{eff}} = \frac{2}{3} \omega_{\text{sp}} \alpha_3 = \frac{2}{3} \omega_{\text{sp}}^{\alpha(3)}. \]
This damping is related to the finite plasmon lifetime \(\tau_p = \gamma_{\text{eff}}^{-1} \) caused by the radiative losses. The effects of a finite plasmon lifetime have already been discussed in the literature. It has been attributed to dissipative (non-radiative) losses and for a small particle estimated as \(\tau_p \approx a/v_p \), see [18]. In contrast, in our case, the finiteness of the lifetime is attributed to radiative (nondissipative) losses due to the transformations of the localized plasmons into scattering light [2, 6, 13] and corresponding time sharply increases with a decrease in the particle size: \(\tau_p \propto a^{-3} \). Formula (10) represents the ‘natural width’ of the dipole resonance related to this transformation. In the general case the natural width of the arbitrary resonance is given by the following expression [13]:
\[\gamma_{\ell} = \frac{(\ell + 1)q^{2\ell+1}}{(\ell(2\ell - 1))^{1/2}}(\text{ds}/\text{d}q)_s. \]
where derivative \((\text{ds}/\text{d}q)_s\) is taken at the corresponding plasmon resonance frequency \(\omega = \omega_{\text{sp}} \). Note an extremely sharp decrease in \(\gamma_{\ell} \) with both a decrease in \(q \) and an increase in \(\ell \), see figure 3.

However this fascinating effect is strongly suppressed by dissipation. The necessary conditions for the anomalous scattering to come into being may be found from the Mie theory, taking into account the dissipation factor \(\varepsilon'' \) in the denominator of the scattering amplitude. This consideration leads to the applicability condition [6, 13]
\[\varepsilon''(\omega_{\text{sp}}) \ll \frac{q^{2\ell+1}}{\ell(2\ell - 1))^{1/2}}. \]
When this condition is fulfilled the anomalous scattering is dominant. In the opposite case the Rayleigh scattering is restored. This condition clearly explained numerical results found in [10]. For example, it follows from equation (12) that with any small \(\varepsilon'' \) the anomalous scattering is suppressed for very small particles. Thus, under real experimental conditions anomalous scattering can be realized just in some intermediate range of size parameters and only up to a certain order of the resonances: \(\ell < \ell_{\text{max}} \).

Another peculiarity of weakly dissipative material is the extra high sensitivity of the angular distribution of scattering light near plasmon resonance frequency, see figure 4. One can compare this picture with figure 10.14 in [3], where calculations are done for a small gold particle. From figure 4 follows that very small variation in the incident light frequency changes the scattering diagram from forward scattering to backward scattering. Note that for a small perfectly reflected sphere the ratio of forward and backward scattered intensities is 1:9, see problem 2 to § 92 in [20].

For the Rayleigh scattering all components of the scattered fields vanish at \(q \to 0 \). In contrast, the Mie theory for nondissipative materials near plasmon resonance frequencies yields singularities and divergent fields, proportional to \(q^{-\ell-2} \) for \(E_{\ell,p,q}^{(t)} \) components of the electric field and proportional to \(q^{-\ell-1} \) for \(H_{\ell,p,q}^{(t)} \) components. This divergence is stabilized at \(\varepsilon'' \neq 0 \), however the inverse size dependence may result in very large enhancement rates of the fields achieved at a small \(q \).

3. Near-field structure of the energy flux

Though the discussed far-field effects are already quite unusual, the most appealing manifestation of the anomalous scattering takes place in the near field. The key point is that the dramatic changes in both the modulus and phase of complex amplitude \(a_{\ell} \) in the vicinity of plasmon resonances yield the corresponding dramatic changes in the near-field structure. For the dipole mode at the dipole resonance point \((a_1 = 1) \) the exact Mie solution yields the following equation for the field lines at \(x\text{--}z \) plane:
\[\text{d}p/\text{d}\theta = \rho S_r/S_0, \]
where \(\rho = r/a \), and \(S_r \) and \(S_0 \) are corresponding spherical components of the
been discussed in [7, 11, 12]. Here we present a particular diagram in the vicinity of the dipole resonance have already Modifications of the Poynting vector field and a bifurcation ε quadrupole resonance at ω should add also that even small deviations of resonance values make the single-partial-mode approximation insufficient to describe the near-field distribution [7].

Anomalous scattering up to much larger dissipation rates. For q polarized along the vector field is shown in the ε of the Rayleigh scattering happens only at ω that the single-partial-mode approximation is insufficient to describe the near-field distribution [7].

While the far-field effects are restricted by strong inequality (12) the near-field distribution is affected by the anomalous scattering up to much larger dissipation rates. For example, for a particle with $q = 0.3$ complete restoration of the Rayleigh scattering happens only at $\varepsilon'' > 0.6$ [7]. Modifications of the Poynting vector field and a bifurcation diagram in the vicinity of the dipole resonance have already been discussed in [7, 11, 12]. Here we present a particular example of the Poynting vector field in the vicinity of the quadrupole resonance at $\varepsilon'' = 0$, see figure 5. The Poynting vector field is shown in the xz plane. Within the particle with weak dissipation these points correspond to centres of the ‘optical whirlpools’ discussed in [9]. Points 5–8 and 11 are saddles. Note two optical vortices (points 9 and 10).

4. Anomalous light scattering by nanowires

Effects related to the radiative damping are important also for nanowires with surface plasmon (polaritons). This also leads to deviation of extinction and scattering characteristics from the Rayleigh approximations for a linear dipole, e.g. for the scattering efficiency [4]

$$Q_{\text{sca}}^{(R)} = \frac{\pi^2}{4} \left(\frac{\varepsilon - 1}{\varepsilon + 1} \right)^2 q^3,$$

We used a tilde to distinguish cylindrical geometry.

Scattering of light by an infinite cylinder also has the exact solution, similar to the Mie solution for a sphere, see e.g. [4]. The simplest form this solution has is for the normal incidence of radiation and TE-mode. In this case the scattering efficiency is expressed in terms of coefficient \tilde{a}_ℓ only [4]:

$$Q_{\text{sca}} = \frac{2}{q} \sum_{n=-\infty}^{\infty} |\tilde{a}_n|^2,$$

and

$$\tilde{a}_\ell = \frac{\tilde{\gamma}_\ell}{\tilde{\gamma}_\ell + i 3 \ell},$$

and

$$\tilde{\gamma}_\ell = \tilde{n} J_\ell (\tilde{n} q) J'_\ell (q) - J'_\ell (\tilde{n} q) J_\ell (q),$$

$$\tilde{\gamma}_\ell = \tilde{n} N_\ell (\tilde{n} q) N'_\ell (q) - N'_\ell (\tilde{n} q) N_\ell (q).$$
Such degeneracy is removed at finite
the corresponding expansion of
resonances at $q\ll 1$ correspond to localized surface plasmon
plasmon branch merges with the volume optical one (for
field were discussed in detail in [12].
energy flux turns out to be quite sensitive to fine detuning
volume resonances similar to that for the discussed optical
with $\ell\geq 1$ in contrast to a spherical particle where all the modes
degeneracy is removed at finite
we obtain the following term in the numerator of \tilde{a}_ℓ for
the plane of parameters $\{q,\epsilon\}$ are shown in figure 7.
For small q resonances arise at $\epsilon < -1$. They occur just for
sharp. The trajectories of the resonances are determined by
equation (19). These resonances are extremely sharp. The trajectories of the resonances are determined by
equation $\tilde{\mathcal{S}}(\epsilon, q) = 0$. To find this equation at small q it
suffices to take into account the term proportional to q^2 only.
As a result we arrive at the equations
\[
\epsilon + 1 \approx \frac{q^2}{8} (\epsilon - 1) \left[2 + \epsilon - 4 \log C_2 \right], \quad \text{for } \ell = 1,
\]
\[
\epsilon + 1 \approx \frac{q^2}{8} (\epsilon - 1) \left[\frac{1}{\ell - 1} + \frac{\epsilon}{\ell + 1} \right], \quad \text{for } \ell > 1,
\]
where $\log C \equiv \gamma \approx 0.577$ is Euler’s constant.
The trajectories of several sequential resonances on the
plane of parameters $\{q, \epsilon\}$ are shown in figure 7. At small q
these trajectories are described by equation (21) and tend to
limit $\epsilon = -1$ at $q \to 0$. The amplitudes \tilde{a}_ℓ are equal one
everywhere along the corresponding trajectories. Resonances
at small $q \ll 1$ correspond to localized surface plasmon
(polariton) modes. At certain values of ϵ they converge with
volume resonances similar to that for the discussed optical
resonances for a sphere, cf figure 2. At small $q < 1$ surface plasmon resonances produce an anomalous light scattering
effect, see in figure 8.
In the case of the nanowire the near-field structure of the
energy flux turns out to be quite sensitive to fine detuning
of frequency of the incident light from the exact resonant
frequencies. Numerous modifications of the Poynting vector
field were discussed in detail in [12].
5. Conclusions

Various applications of the anomalous scattering in nanotechnologies and related fields may be associated with (i) enormous amplification of the incident electromagnetic field in the near field; (ii) controllable changes of the near-field structure with changes of the incident light frequency; (iii) comparable intensity of the resonant electromagnetic field at different resonant frequencies of the incident light, corresponding to different orders of resonance, accompanied by quite a different field distribution for each order of the resonance. All this opens new prospects for optical manipulation in the field structure in the nanoscale region.

Acknowledgments

We are very grateful to S I Anisimov, L P Pitaevskiy and N Arnold for discussions and critical comments. This work was partially supported by Russian Basic Research Foundation (grants 04-02-17225 and 04-02-16972).

References

[8] Evlyukhin A B and Bozhevolnyi S I 2005 Applicability conditions for the dipole approximation in the problems of scattering of surface plasmon polaritons JETP Lett. 81 218–21
[10] Luk’yanchuk B S and Tribelsky M I 2005 Anomalous light scattering by small particles and inverse hierarchy of optical resonance Collection of Papers Devoted to Memory of Prof. M N Libenson St.-Petersburg Union of the Scientists Russia 101–15
[15] Lord Rayleigh 1871 On the light from the sky, its polarization and colour appendix Phil. Mag. 41 107–20
Lord Rayleigh 1871 On the light from the sky, its polarization and colour appendix Phil. Mag. 41 274–9
Lord Rayleigh 1871 On the scattering of light by small particles Phil. Mag. 41 447–54